MathCAD


3.3. Взгляд эстета - часть 3


2.    Перед решением оптимизационной задачи с ограничениями прогоните ее не с функцией MinErr, Minimize или Maximize, а с функцией Find для того, чтобы оценить область существования решений.

3.    Начинайте поиск оптимального решения от одной из точек, найденных в пункте 2 и лежащих недалеко от оптимума.

4.    Вводите ограничения постепенно: ввели первое – нашли какое-то подобие решения, ввели второе – уточнили его и т.д.

5.    Начинайте решение оптимизационной задачи с целочисленными аргументами без ограничений на целочисленность. Нецелочисленный ответ всегда будет полезен, так как 1) от него можно начать поиск целочисленного решения, 2) можно удовлетвориться нецелочисленным решением (появление совместителя, например, в задаче об оптимальном штатном расписании) и 3) числа можно округлить вручную, если целочисленное решение отыскать невозможно.

6.    Проверяйте правильность найденных корней, минимумов и максимумов построением графиков и поверхностей, где эти точки видны, благо пакет Mathcad имеет богатый набор графики. Если аргументов у функции больше двух, постройте графики сечений через точку оптимума (рис. 3.5) по всем координатам и убедитесь, что там все частные производные равны нулю. Неплохо тут протабулировать анализируемую функцию вокруг найденной точки и показать, что отход от оптимума ухудшает результат.

7.    Прежде чем решать задачу численно, проанализируйте ее средствами символьной математики (этюд 7). Если даже аналитическое решение не будет найдено, то можно, например, выведенную частную производную использовать в численном решении системы (гибридность решения задачи – см. раздел 7.5).


[1] Он уже был раскрыт в двух предыдущих изданиях книги. Автор еще раз просит у читателя прощения за повторы и за самокомпиляцию (см. также предисловие).

[2] Рутинные операторы, формирующие матрицу M, по которой строятся графики, захлопнуты – см. рис. 2.7, где они открыты.




- Начало -  - Назад -  - Вперед -