MathCAD


Рис. 2.10. Транспортная задача


Спрашивается, как нужно организовать перевозки (найти значения переменных с1м1, с1м2, с2м1 и с2м2), чтобы затраты были минимальны. На рис. 2.10 дан ответ. Парадокс задачи в том, что по самому дешевому маршруту (со второго склада в первый магазин – 800 у.е.) ничего не возится (с2м1 = 0). Этот парадокс мы также обыграем в следующем этюде.

Задачи на рис. 2.9 и.2.10 простенькие, но очень, если так можно выразиться, жизненно важные. На каждом шагу приходится что-то оптимизировать (расходы, например), принимая во внимание всякого рода ограничения (доходы!). Возвращаясь к сноске 17, можно привести такой пример. После часа пик (зимнее утро, к примеру) расход электроэнергии падает и необходимо снижать нагрузку электрогенераторов. Как это делать? Можно отключить отдельные турбогенераторы, а можно оставить их в работе, изменив нагрузку. Диспетчер энергосистемы дает соответствующие команды, ориентируясь на некие целевые функции: средний расход топлива по системе, выброс с дымовыми газами вредных веществ в атмосферу, износ оборудования, степень готовности электростанций и дальше менять нагрузку и т.д. Переменные такой оптимизации могут быть и вещественными (мощность отдельного энергоблока, которая меняется, естественно, в разумных пределах, определяемых техническими условиями – ограничения в задаче) и целочисленными (число работающих блоков). Эта задача очень сложная, но и очень эффективная – здесь речь идет о высвобождаемых составах с топливом.

Вот еще примеры. Когда нужно убирать пшеницу? Пораньше – зерно еще не вызрело. Попозже – часть зерна уже осыпалась. Сколько и каких акций стоит купить на ограниченную сумму денег, чтобы будущий дивиденд был максимален? В каких средствах массовой информации стоит размещать рекламу на выделенные по смете деньги, чтобы эффект от нее был максимален?

Разговор об оптимизации мы продолжим в этюде 3 в несколько ином ключе.


[1] Тем более что, переменная R уже занята под хранение градусов Ренкина. В этом можно убедиться, набрав R= и получив R=0.556 K (градус Ренкина в градусах Кельвина). Присвоением R:=1m мы «испортили» данную системную переменную, что может выйти нам боком, если в расчет придется вводить температуру. Отсюда вытекает хорошее правило работы в среде Mathcad: «Никогда не пользуйтесь оператором «:=». Для присваивания значения переменной лучше работать с оператором «=», автоматически превращающимся в оператор «:=», если соответствующая переменная не занята пользователем или системой.




- Начало -  - Назад -  - Вперед -