MathCAD


Рис. 4.17. Оценка качеств менеджера (окончание)


Средневзвешенная оценка качества менеджера в баллах (пункт 4 на рис. 4.17) ¾ Kм = 4.162.

Алгоритм определения весовых коэффициентов ai влияет на оценку качества, которая может быть выполнена по выбору ЛПР на основе гипотезы равной значимости весовых коэффициентов:

где ai = 1 / n.

В этом случае оценка качества значительно возрастает (в сравнении со средневзвешенной оценкой) – K1м

= 4.593.

Значения весовых коэффициентов могут быть установлены с учетом специфики конкретного заказа из условия приоритета  качеств (требуется «высокий» профессионал, личность приятная во всех отношениях, но без особой склонности к руководству). В этом случае приоритеты могут быть установлены, например, на следующих значениях: для профессиональных качеств ¾ kп1=1.15, личностных ¾ kп2 =1.05, деловых ¾ kп3 =0.8. Значения весовых коэффициентов для групп качеств r определяются формулой:

(ar)i = kпr / n,     где  n = 9,  r= 1, 2, 3,

и равны – (a1)i =

1.15 / 9 = 0.128; (a2)i =  1.05 / 9 = 0.117; (a3)i =  0.8 / 9 = 0.089.

Вектор-строка весовых коэффициентов имеет вид:

i

1

2

3

4

5

6

7

8

9

(ar)I

(a1)i

(a1)i

(a1)i

(a2)i

(a2)i

(a2)i

(a3)i

(a3)i

(a3)i

Средневзвешенная оценка качества менеджера  в баллах (пункт 8 на рис. 4.17) ¾

= 4.496.

Итак, в рассмотренном примере в зависимости от способа определения весовых коэффициентов получены три оценки качества:

Km = 4.162 – при экспертной оценке a;

K1m

= 4.593 – случай равнозначимых весовых коэффициентов;

K2m = 4.496 – при приоритете (kп1=1.15) профессиональных качеств.

Выбор кандидата – прерогатива лица, принимающего решение, или конкурсной комиссии.

Рассмотренная методика применима для оценки качества продукции, результатов испытаний, экзаменов и других задач экспертной оценки.

Возможно, руководителю группы экспертов или заказчику экспертизы потребуется анализ результатов работы экспертов для оценки их компетентности, пристрастий или добросовестности.




- Начало -  - Назад -  - Вперед -